organic compounds

Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

Di-tert-butyl (2R,3R)-2-{[(2E)-3-(4-acetvloxy-3-methoxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioate

Josh L. Hixson,^a Dennis K. Taylor,^a[‡] Seik Weng Ng^{b,c} and Edward R. T. Tiekink^b*

^aSchool of Agriculture, Food and Wine, University of Adelaide, Waite Campus, PMB 1, Glen Osmond, SA 5064, Australia, ^bDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia, and ^cChemistry Department, Faculty of Science, King Abdulaziz University, PO Box 80203 Jeddah, Saudi Arabia Correspondence e-mail: edward.tiekink@gmail.com

Received 19 January 2012; accepted 22 January 2012

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.005 Å; disorder in main residue; R factor = 0.057; wR factor = 0.159; data-to-parameter ratio = 14.7

In the title molecule, $C_{24}H_{32}O_{10}$, one *tert*-butyl ester group is folded towards the central benzene ring while the other is directed away. The acetyl group is almost perpendicular to the benzene ring to which it is connected [C-C-O-C torsion angle = 90.4 $(12)^{\circ}$]. The conformation about the ethene bond [1.313(7) Å] is E. The atoms of the benzene ring and its attached ester group and part of the hydroxy tert-butyl ester side chain are disordered over two sets of sites in a 50:50 ratio. Linear supramolecular chains along the a axis mediated by hydroxy-carbonyl O-H···O hydrogen bonds feature in the crystal packing. The same H atom also partakes in an intramolecular $O-H \cdots O$ interaction.

Related literature

For background to the formation of the odorant 4-ethylguaiacol with relevance to the wine industry, see: Chatonnet et al. (1992); Hixson et al. (2012); Ong & Nagel (1978); Nagel & Wulf (1979); Zhao & Burke (1998). For the preparation and characterization of 1-O-acetyl ferulic acid; see: Zhao & Burke (1998); Hosoda et al. (2001).

[‡] Additional correspondence author, e-mail: dennis.taylor@adelaide.edu.au.

Crystal data

C24H32O10 V = 1246.71 (3) Å³ $M_r = 480.50$ Z = 2Monoclinic, P2 Cu Ka radiation a = 5.9894 (1) Å $\mu = 0.84 \text{ mm}^{-1}$ b = 10.6483 (1) Å T = 100 Kc = 19.6676 (2) Å $0.30 \times 0.25 \times 0.20 \text{ mm}$ $\beta = 96.324 (1)^{\circ}$

Data collection

Agilent SuperNova Dual diffractometer with an Atlas detector Absorption correction: multi-scan

(CrysAlis PRO; Agilent, 2010) $T_{\min} = 0.736, T_{\max} = 1.000$

Refinement

H-atom parameters constrained
$\Delta \rho_{\rm max} = 0.56 \ {\rm e} \ {\rm \AA}^{-3}$
$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
Absolute structure: Flack (1983
2185 Friedel pairs
Flack parameter: 0.0 (2)

7492 measured reflections

 $R_{\rm int} = 0.011$

4800 independent reflections 4762 reflections with $I > 2\sigma(I)$

983).

Table 1

Hydrogen-bond geometry (Å, °).

$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
$\begin{array}{c} O18-H18\cdots O32\\ O18-H18\cdots O22^{i} \end{array}$	0.84 0.84	2.21 2.57	2.631 (8) 3.185 (5)	111 131

Symmetry code: (i) x - 1, y, z.

Data collection: CrysAlis PRO (Agilent, 2010); cell refinement: CrysAlis PRO; data reduction: CrysAlis PRO; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 (Farrugia, 1997) and DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010).

This project was supported by the School of Agriculture, Food and Wine, the University of Adelaide, as well as by Australia's grape growers and winemakers through their investment body, the Grape and Wine Research and Development Corporation, with matching funds from the Australian Government. The Ministry of Higher Education (Malaysia) is thanked for funding structural studies through the High-Impact Research Scheme (grant No. UM·C/HIR/MOHE/SC/ 12).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: HB6612).

References

Agilent (2010). CrysAlis PRO. Agilent Technologies, Yarnton, Oxfordshire, England.

Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany. Chatonnet, P., Dubourdieu, D., Boidron, J. N. & Pons, M. (1992). J. Sci. Food Agric. 60, 165-178.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Flack, H. D. (1983). Acta Cryst. A39, 876-881.

- Hixson, J. L., Sleep, N. R., Capone, D. L., Elsey, G. M., Curtin, C. D., Sefton, M. A. & Taylor, D. K. (2012). J. Agric. Food Chem. Submitted.
- Hosoda, A., Nomura, E., Mizuno, K. & Taniguchi, H. (2001). *J. Org. Chem.* **66**, 7199–7201.
- Nagel, C. W. & Wulf, L. W. (1979). Am. J. Enol. Vitic. 30, 111-116.
- Ong, B. Y. & Nagel, C. W. (1978). Am. J. Enol. Vitic. **29**, 277–281. Sheldrick, G. M. (2008). Acta Cryst. **A64**, 112–122. Westrip, S. P. (2010). J. Appl. Cryst. **43**, 920–925.
- Zhao, H. & Burke, T. R. (1998). Synth. Commun. 28, 737-740.

supplementary materials

Acta Cryst. (2012). E68, o568-o569 [doi:10.1107/S1600536812002784]

Di-*tert*-butyl (2*R*,3*R*)-2-{[(2*E*)-3-(4-acetyloxy-3-methoxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioate

Josh L. Hixson, Dennis K. Taylor, Seik Weng Ng and Edward R. T. Tiekink

Comment

The breakdown of ferulic acid by *D. bruxellensis* to form the potent odorant 4-ethylguaiacol has been known for decades (Chatonnet *et al.*, 1992). Recently, it has been found that the metabolism of the ethyl ester of ferulic acid by this yeast can also result in the accumulation of 4-ethylguaiacol (Hixson *et al.*, 2012). Existing in both the grape berry and in wine in significant concentrations (Ong & Nagel, 1978; Nagel & Wulf, 1979), the feruloyl *L*-tartrate ester has the potential to contribute to the accumulation of 4-ethylguaiacol in finished wines and thus contribute further to the spoilage of wine. Synthesis of the known wine component feruloyl *L*-tartrate was achieved using di-*tert*-butyl *L*-tartrate and the 1-*O*-acetyl protected hydroxycinnamic acid in an analogous method to that described by Zhao & Burke (1998). The products of coupling were isolated and recrystallized from 30% ethyl acetate/hexane to afford a crystalline solid from which the structure was determined by X-ray crystallography to confirm the retention of the (*R*,*R*)-stereochemistry, Fig. 1.

The hydroxyl-H atom is bifurcated, forming an intramolecular O—H···O hydrogen bond with the adjacent carbonyl-O, Table, and an intermolecular O–H···O hydrogen bond with a translationally related carbonyl-O atom to form a linear supramolecular chain along the a axis, Fig. 1 and Table 1.

Experimental

1-*O*-Acetyl ferulic acid was prepared using a method analogous to that previously described by Zhao and Burke (1998), and the characterization data matched that previously described (Hosoda *et al.*, 2001). 1-*O*-Acetyl ferulic acid (0.16 g, 0.67 mmol) was heated under reflux in dry benzene (10 ml) containing thionyl chloride (1 ml, 13.77 mmol). After 5 h the mixture was allowed to cool to room temperature and then concentrated *in vacuo*. The crude residue was taken up in dry benzene (3 ml) and added drop-wise to a solution of di-*tert*-butyl *L*-tartrate (0.21 g, 0.79 mmol) in dry pyridine (3 ml), then stirred at ambient temperature overnight. The mixture was concentrated and pyridine azeotropically removed with toluene. Purification with column chromatography (20% EtOAc/X4) and recrystallization from 30% EtOAc/X4 gave 154.0 mg (48%) of white crystals. *M*.pt 413.7–415.2 K. *R*_f (30% EtOAc/X4): 0.34 ¹H NMR: (600 MHz, CDCl₃) δ : 7.70 (d, 1H, J = 16.0 Hz, H₇), 7.12–7.11 (m, 2H, H_{3.5}), 7.05 (d, 1H, J = 8.6 Hz, H₆), 6.45 (d, 1H, J = 16.0 Hz, H₈), 5.50 (d, 1H, J = 2.3 Hz, H₂), 4.68 (dd, 1H, J = 6.8 and 2.3 Hz, H₃), 3.87 (s, 3H, OCH₃), 3.21 (d, 1H, J = 6.8 Hz, OH), 2.33 (s, 3H, OCOCH₃), 1.51 (s, 9H, *t*-Bu₄), 1.44 (s, 9H, ¹Bu₁). ¹³C NMR: (600 MHz, CDCl₃) δ : 170.2 (C₄), 168.9 (OCOCH₃), 165.9 (C₁), 165.5 (C9), 151.5 (C7), 145.9 (C2), 141.8 (C1), 133.2 (C4), 123.4 (C6), 121.8 (C5), 116.8 (C8), 111.3 (C3), 84.1 (**C**₁(CH₃)₃), 83.5 (**C**₄(CH₃)₃), 73.5 (C₂), 71.0 (C₃), 56.1 (OMe), 28.1 (C₄(CH₃)₃), 28.0 (C₁(CH₃)₃), 20.8 (OCOCH₃). Calc. C 59.99, H 6.71, O 33.30. Anal. C₂₄H₃₂O₁₀ for C 59.79, H 6.73, O 33.48.

Refinement

Carbon- and oxygen bound H-atoms were placed in calculated positions [C—H 0.95 to 1.00 and O—H 0.84 Å; U_{iso} (H) 1.2 to $1.5U_{eq}$ (C,O)] and were included in the refinement in the riding model approximation. The molecule is disordered in some parts of the molecule. The disorder was treated as a 1:1 type of disorder. The aromatic rings were refined as rigid hexagons of 1.39 Å sides. For the disordered atoms, pairs of 1,2-related bond distances were restrained to within 0.01 Å of each other; these included atom—atom_{ordered} as well as atom—atom_{disordered} distances. The displacement parameters of the primed atoms were set to those of the unprimed ones, and the anisotropic displacement factors of the disordered atom atoms were restrained to be nearly isotropic. The two *t*-butyl groups are both ordered. However, the vibration of one of the four-carbon groups had to be tightly restrained to be nearly isotropic.

Computing details

Data collection: *CrysAlis PRO* (Agilent, 2010); cell refinement: *CrysAlis PRO* (Agilent, 2010); data reduction: *CrysAlis PRO* (Agilent, 2010); program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *ORTEP-3* (Farrugia, 1997) and *DIAMOND* (Brandenburg, 2006); software used to prepare material for publication: *publCIF* (Westrip, 2010).

Figure 1

The molecular structure of the title compound showing the atom-labelling scheme and displacement ellipsoids at the 50% probability level. Only one component of the disordered atoms is shown for clarity.

Figure 2

A view of the linear supramolecular chain along the *a* axis mediated by O—H…O hydrogen bonds shown as orange dashed lines. Only one component of the disordered atoms is shown for clarity.

Di-tert-butyl (2R,3R)-2-{[(2E)-3-(4-acetyloxy- 3-methoxyphenyl)prop-2-enoyl]oxy}-3-hydroxybutanedioate

F(000) = 512

 $\theta = 4.2 - 74.3^{\circ}$ $\mu = 0.84 \text{ mm}^{-1}$

Block, colourless

 $0.30 \times 0.25 \times 0.20 \text{ mm}$

T = 100 K

 $D_{\rm x} = 1.280 {\rm Mg} {\rm m}^{-3}$

Cu K α radiation, $\lambda = 1.54184$ Å

Cell parameters from 5994 reflections

Crystal data $C_{24}H_{32}O_{10}$ $M_r = 480.50$ Monoclinic, $P2_1$ Hall symbol: P 2yb a = 5.9894 (1) Å b = 10.6483 (1) Å c = 19.6676 (2) Å $\beta = 96.324$ (1)° V = 1246.71 (3) Å³ Z = 2

Data collection

Agilent SuperNova Dual	$T_{\min} = 0.736, T_{\max} = 1.000$
diffractometer with an Atlas detector	7492 measured reflections
Radiation source: SuperNova (Cu) X-ray	4800 independent reflections
Source	4762 reflections with $I > 2\sigma(I)$
Mirror monochromator	$R_{\rm int} = 0.011$
Detector resolution: 10.4041 pixels mm ⁻¹	$\theta_{\rm max} = 74.5^{\circ}, \ \theta_{\rm min} = 4.5^{\circ}$
ω scan	$h = -7 \rightarrow 7$
Absorption correction: multi-scan	$k = -13 \rightarrow 12$
(CrysAlis PRO; Agilent, 2010)	$l = -16 \rightarrow 24$

Refinement

Refinement on F^2	Hydrogen site location: inferred from
Least-squares matrix: full	neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.057$	H-atom parameters constrained
$wR(F^2) = 0.159$	$w = 1/[\sigma^2(F_o^2) + (0.0976P)^2 + 0.9408P]$
S = 1.04	where $P = (F_{o}^{2} + 2F_{c}^{2})/3$
4800 reflections	$(\Delta/\sigma)_{\rm max} < 0.001$
326 parameters	$\Delta \rho_{\rm max} = 0.56 \text{ e } \text{\AA}^{-3}$
113 restraints	$\Delta \rho_{\rm min} = -0.56 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: <i>SHELXL97</i> (Sheldrick, 2008), $Fc^*=kFc[1+0.001xFc^2\lambda^3/sin(2\theta)]^{-1/4}$
Secondary atom site location: difference Fourier	Extinction coefficient: 0.0092 (14)
map	Absolute structure: Flack (1983), 2185 Friedel pairs
	Flack parameter: 0.0 (2)

Special details

Geometry. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equi	valent isotropic displacement parameters $(Å^2)$
---	--

	x	У	Ζ	$U_{ m iso}$ */ $U_{ m eq}$	Occ. (<1)
07	0.4371 (4)	0.5005 (2)	-0.08067 (10)	0.0278 (5)	
09	0.6166 (4)	0.3370 (2)	-0.16084 (11)	0.0328 (5)	
O11	0.4029 (4)	0.1948 (2)	-0.11472 (11)	0.0292 (5)	
O22	1.3631 (4)	0.6050(2)	0.41763 (10)	0.0310 (5)	
O26	1.0669 (4)	0.2356 (2)	0.32468 (11)	0.0347 (5)	
O29	1.2096 (4)	0.7128 (2)	0.32469 (12)	0.0397 (6)	
C8	0.3467 (6)	0.5990 (3)	-0.04224 (16)	0.0336 (7)	
H8A	0.2064	0.6296	-0.0671	0.050*	
H8B	0.4550	0.6681	-0.0359	0.050*	
H8C	0.3167	0.5667	0.0025	0.050*	
C10	0.4462 (5)	0.2526 (3)	-0.16343 (14)	0.0242 (6)	
C19	0.3237 (7)	0.2434 (4)	-0.23373 (16)	0.0424 (8)	
H19A	0.2985	0.1548	-0.2458	0.064*	
H19B	0.4135	0.2828	-0.2666	0.064*	
H19C	0.1788	0.2865	-0.2349	0.064*	
C16	1.1830 (5)	0.4859 (3)	0.33031 (14)	0.0276 (6)	
H16	1.3204	0.4323	0.3387	0.033*	0.50
H16′	1.3135	0.4291	0.3258	0.033*	0.50
C17	1.0120 (6)	0.4317 (3)	0.3743 (2)	0.0398 (8)	
H17	1.1049	0.4023	0.4167	0.048*	0.50
H17′	1.0675	0.4238	0.4240	0.048*	0.50
C21	1.2513 (5)	0.6166 (3)	0.35547 (15)	0.0281 (6)	

C23	1.4332 (6)	0.7160 (3)	0.46048 (15)	0.0288 (6)	
C24	1.5891 (5)	0.7998 (3)	0.42441 (15)	0.0307 (6)	
H24A	1.5054	0.8372	0.3838	0.046*	
H24B	1.7137	0.7496	0.4107	0.046*	
H24C	1.6486	0.8666	0.4556	0.046*	
C27	1.0144 (9)	0.1107 (4)	0.29275 (19)	0.0545 (11)	
C28	1.2436 (10)	0.0608 (4)	0.2822 (3)	0.0677 (13)	
H28A	1.3319	0.0486	0.3266	0.102*	
H28B	1.3203	0.1210	0.2550	0.102*	
H28C	1.2275	-0.0197	0.2579	0.102*	
C30	1.5590 (6)	0.6561 (3)	0.52404 (16)	0.0350(7)	
H30A	1.6931	0.6130	0.5115	0.052*	
H30B	1.4609	0.5953	0.5435	0.052*	
H30C	1.6036	0.7214	0.5579	0.052*	
C31	1.2248 (6)	0.7844 (3)	0.47798 (18)	0.0377 (7)	
H31A	1.1468	0.8215	0.4364	0.057*	
H31B	1.2684	0.8509	0.5112	0.057*	
H31C	1.1248	0.7249	0.4976	0.057*	
C33	0.8689(11)	0.1311 (6)	0.2251 (2)	0.0820 (18)	
H33A	0.9517	0.1817	0.1946	0.123*	
H33B	0.7308	0.1751	0.2335	0.123*	
H33C	0.8306	0.0497	0.2037	0.123*	
C34	0.9014 (10)	0.0297 (4)	0.3424(2)	0.0612 (12)	
H34A	1.0038	0.0178	0.3843	0.092*	
H34B	0.8635	-0.0521	0.3214	0.092*	
H34C	0.7640	0.0712	0.3536	0.092*	
C25	0.9092 (6)	0.3113 (4)	0.34205 (19)	0.0426 (9)	
015	1.1121 (8)	0.4798 (6)	0.2571 (3)	0.0228(10)	0.50
018	0.8662 (8)	0.5278 (4)	0.3987 (3)	0.0307(7)	0.50
H18	0.7365	0.4983	0.3996	0.046*	0.50
020	1,4905 (9)	0.4773 (6)	0.2372(3)	0.0428(11)	0.50
032	0.7017 (9)	0.3148 (6)	0.3472(3)	0.0330(11)	0.50
C5	0.9150 (8)	0.4130(9)	0.0399(2)	0.0257(15)	0.50
C6	0.7206(15)	0.4724(12)	0.0333(2) 0.0112(5)	0.0287(12)	0.50
Н6	0.6447	0.5298	0.0376	0.035*	0.50
C1	0.637(2)	0.3290 0.4479 (19)	-0.0576	0.0238 (10)	0.50
C2	0.037(2) 0.748(2)	0.3639(18)	-0.0950(4)	0.0298(17)	0.50
C2	0.9427(17)	0.3045(11)	-0.0662(4)	0.0200(17) 0.0312(15)	0.50
Н3	1.0185	0.2471	-0.0926	0.037*	0.50
C4	1.0261 (11)	0.2471 0.3290 (9)	0.0020	0.037 0.0329(17)	0.50
H4	1.1590	0.2884	0.0209	0.039*	0.50
C12	0.9996 (9)	0.2004	0.0209 0.1183 (3)	0.035(9)	0.50
H12	0.8911	0.4701	0.1477	0.0235 (5)	0.50
C13	1 2118 (9)	0.4426 (6)	0.1434(3)	0.020 0.0247 (8)	0.50
H13	1 3169	0.4233	0.1121	0.0247 (0)	0.50
C14	1 3058 (13)	0.4652(7)	0.2160 (3)	0.0211 (10)	0.50
015'	1.0409 (8)	0.5056 (6)	0.2672(3)	0.0211(10) 0.0228(10)	0.50
018'	0.8121(7)	0.5050(0) 0 5086(4)	0.2672(3)	0.0220(10) 0.0307(7)	0.50
H18'	0.6082	0.2653	0.3667	0.0307 (7)	0.50
1110	0.0702	0.7055	0.5007	0.070	0.50

O20′	1.3768 (11)	0.4694 (8)	0.2179 (4)	0.0428 (11)	0.50	
O32′	0.7143 (9)	0.2721 (6)	0.3262 (3)	0.0330(11)	0.50	
C5′	0.9726 (8)	0.4098 (9)	0.0235 (2)	0.0257 (15)	0.50	
C6′	0.7657 (16)	0.4690 (12)	0.0099 (5)	0.0288 (12)	0.50	
H6′	0.7173	0.5273	0.0418	0.035*	0.50	
C1′	0.6298 (18)	0.4431 (19)	-0.0504 (6)	0.0238 (10)	0.50	
C2′	0.7007 (19)	0.3579 (18)	-0.0971 (5)	0.0208 (17)	0.50	
C3′	0.9076 (17)	0.2987 (11)	-0.0835 (4)	0.0312 (15)	0.50	
H3′	0.9561	0.2405	-0.1154	0.037*	0.50	
C4′	1.0436 (11)	0.3246 (9)	-0.0232 (3)	0.0329 (17)	0.50	
H4′	1.1850	0.2841	-0.0139	0.039*	0.50	
C12′	1.0951 (9)	0.4272 (5)	0.0934 (3)	0.0235 (9)	0.50	
H12′	1.2474	0.4006	0.0988	0.028*	0.50	
C13′	1.0193 (11)	0.4750 (6)	0.1491 (3)	0.0247 (8)	0.50	
H13′	0.8696	0.5049	0.1482	0.030*	0.50	
C14′	1.1755 (11)	0.4797 (6)	0.2121 (3)	0.0211 (10)	0.50	

Atomic displacement parameters $(Å^2)$

U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
0.0346 (10)	0.0278 (10)	0.0191 (9)	0.0055 (9)	-0.0054 (7)	-0.0043 (8)
0.0478 (12)	0.0274 (11)	0.0254 (10)	-0.0106 (10)	0.0145 (9)	-0.0049 (8)
0.0318 (10)	0.0317 (11)	0.0233 (10)	-0.0058 (9)	-0.0012 (8)	0.0043 (9)
0.0488 (12)	0.0215 (10)	0.0205 (10)	-0.0008 (9)	-0.0068 (8)	0.0014 (8)
0.0441 (13)	0.0264 (11)	0.0310 (11)	-0.0172 (9)	-0.0076 (9)	0.0017 (9)
0.0428 (13)	0.0344 (13)	0.0372 (12)	-0.0119 (10)	-0.0169 (10)	0.0191 (10)
0.0429 (17)	0.0298 (16)	0.0265 (14)	0.0091 (14)	-0.0031 (12)	-0.0054 (12)
0.0298 (14)	0.0209 (13)	0.0223 (13)	0.0043 (11)	0.0047 (10)	-0.0010 (11)
0.069 (2)	0.0356 (18)	0.0203 (14)	0.0014 (17)	-0.0026 (14)	0.0006 (13)
0.0322 (14)	0.0292 (15)	0.0193 (13)	-0.0102 (12)	-0.0072 (11)	0.0050 (11)
0.0406 (18)	0.0251 (16)	0.056 (2)	0.0031 (14)	0.0179 (15)	0.0153 (15)
0.0253 (13)	0.0311 (15)	0.0262 (14)	-0.0063 (12)	-0.0051 (10)	0.0077 (13)
0.0421 (16)	0.0189 (13)	0.0248 (14)	-0.0024 (12)	0.0000 (11)	0.0002 (11)
0.0353 (15)	0.0263 (15)	0.0299 (15)	0.0005 (12)	0.0019 (11)	0.0065 (12)
0.092 (3)	0.0381 (18)	0.0305 (17)	-0.038 (2)	-0.0078 (18)	-0.0010 (15)
0.111 (4)	0.040 (2)	0.056 (2)	-0.019 (2)	0.025 (2)	-0.0203 (19)
0.056 (2)	0.0237 (14)	0.0226 (15)	-0.0055 (14)	-0.0075 (13)	0.0000 (12)
0.0429 (17)	0.0308 (17)	0.0406 (18)	-0.0026 (14)	0.0105 (14)	-0.0017 (14)
0.121 (4)	0.083 (3)	0.036 (2)	-0.070 (3)	-0.017 (2)	0.015 (2)
0.099 (3)	0.047 (2)	0.0349 (18)	-0.040 (2)	-0.0053 (18)	0.0038 (16)
0.0330 (16)	0.045 (2)	0.0472 (19)	-0.0140 (15)	-0.0096 (13)	0.0300 (17)
0.019 (3)	0.027 (3)	0.0207 (17)	-0.0050 (19)	-0.0049 (17)	0.0026 (15)
0.0330 (17)	0.0225 (15)	0.036 (2)	-0.0023 (13)	0.0025 (16)	-0.0022 (16)
0.025 (2)	0.063 (2)	0.039 (2)	-0.010 (3)	-0.0039 (18)	0.009 (2)
0.0285 (13)	0.029 (3)	0.040 (3)	-0.0141 (19)	-0.0021 (17)	0.0005 (19)
0.013 (3)	0.0270 (18)	0.037 (3)	-0.012 (3)	0.001 (2)	0.011 (3)
0.033 (3)	0.0180 (15)	0.0315 (16)	-0.002 (2)	-0.0128 (19)	0.0007 (12)
0.0289 (15)	0.0196 (16)	0.0222 (19)	-0.0039 (13)	0.0000 (14)	0.0016 (17)
0.008 (5)	0.0230 (19)	0.0321 (16)	-0.011 (4)	0.0036 (16)	-0.0013 (12)
	U^{11} 0.0346 (10) 0.0478 (12) 0.0318 (10) 0.0478 (12) 0.0318 (10) 0.0488 (12) 0.0441 (13) 0.0428 (13) 0.0429 (17) 0.0298 (14) 0.069 (2) 0.0322 (14) 0.0406 (18) 0.0253 (13) 0.0421 (16) 0.0353 (15) 0.092 (3) 0.111 (4) 0.056 (2) 0.0429 (17) 0.121 (4) 0.099 (3) 0.0330 (16) 0.019 (3) 0.0330 (17) 0.025 (2) 0.0285 (13) 0.013 (3) 0.033 (3) 0.0289 (15) 0.008 (5)	U^{11} U^{22} $0.0346(10)$ $0.0278(10)$ $0.0478(12)$ $0.0274(11)$ $0.0318(10)$ $0.0317(11)$ $0.0478(12)$ $0.0215(10)$ $0.0488(12)$ $0.0215(10)$ $0.0441(13)$ $0.0264(11)$ $0.0428(13)$ $0.0344(13)$ $0.0429(17)$ $0.0298(16)$ $0.0298(14)$ $0.0209(13)$ $0.069(2)$ $0.0356(18)$ $0.0322(14)$ $0.0292(15)$ $0.0406(18)$ $0.0251(16)$ $0.0253(13)$ $0.0311(15)$ $0.0421(16)$ $0.0189(13)$ $0.0353(15)$ $0.0263(15)$ $0.092(3)$ $0.0381(18)$ $0.111(4)$ $0.040(2)$ $0.056(2)$ $0.0237(14)$ $0.0429(17)$ $0.0308(17)$ $0.121(4)$ $0.083(3)$ $0.099(3)$ $0.047(2)$ $0.0330(16)$ $0.045(2)$ $0.019(3)$ $0.027(3)$ $0.0330(17)$ $0.0225(15)$ $0.0255(2)$ $0.063(2)$ $0.0285(13)$ $0.029(3)$ $0.013(3)$ $0.0180(15)$ $0.0289(15)$ $0.0196(16)$ $0.008(5)$ $0.0230(19)$	U^{11} U^{22} U^{33} 0.0346 (10)0.0278 (10)0.0191 (9)0.0478 (12)0.0274 (11)0.0254 (10)0.0318 (10)0.0317 (11)0.0233 (10)0.0488 (12)0.0215 (10)0.0205 (10)0.0441 (13)0.0264 (11)0.0310 (11)0.0428 (13)0.0344 (13)0.0372 (12)0.0429 (17)0.0298 (16)0.0265 (14)0.0298 (14)0.0209 (13)0.0223 (13)0.069 (2)0.0356 (18)0.0203 (14)0.0322 (14)0.0292 (15)0.0193 (13)0.0406 (18)0.0251 (16)0.056 (2)0.0253 (13)0.0311 (15)0.0262 (14)0.0421 (16)0.0189 (13)0.0248 (14)0.0353 (15)0.0263 (15)0.0299 (15)0.092 (3)0.0381 (18)0.0305 (17)0.111 (4)0.040 (2)0.056 (2)0.056 (2)0.0237 (14)0.0226 (15)0.0429 (17)0.0308 (17)0.0406 (18)0.121 (4)0.083 (3)0.036 (2)0.099 (3)0.047 (2)0.0349 (18)0.0330 (16)0.045 (2)0.0349 (18)0.0330 (17)0.0225 (15)0.036 (2)0.025 (2)0.063 (2)0.039 (2)0.025 (13)0.0270 (18)0.037 (3)0.033 (3)0.0180 (15)0.0315 (16)0.0289 (15)0.0196 (16)0.0222 (19)0.008 (5)0.0230 (19)0.0321 (16)	U^{11} U^{22} U^{33} U^{12} 0.0346 (10)0.0278 (10)0.0191 (9)0.0055 (9)0.0478 (12)0.0274 (11)0.0254 (10) -0.0106 (10)0.0318 (10)0.0317 (11)0.0233 (10) -0.0058 (9)0.0488 (12)0.0215 (10)0.0205 (10) -0.0008 (9)0.0441 (13)0.0264 (11)0.0310 (11) -0.1172 (9)0.0428 (13)0.0344 (13)0.0372 (12) -0.0119 (10)0.0429 (17)0.0298 (16)0.0265 (14)0.0091 (14)0.0298 (14)0.0209 (13)0.0223 (13)0.0043 (11)0.069 (2)0.0356 (18)0.0203 (14)0.0014 (17)0.0322 (14)0.0292 (15)0.0193 (13) -0.0102 (12)0.0406 (18)0.0251 (16)0.056 (2)0.0031 (14)0.0253 (13)0.0311 (15)0.0262 (14) -0.0063 (12)0.0421 (16)0.0189 (13)0.0248 (14) -0.0024 (12)0.056 (2)0.0237 (14)0.0226 (15) -0.0055 (14)0.0429 (17)0.0308 (17)0.0406 (18) -0.0026 (14)0.121 (4)0.083 (3)0.036 (2) -0.070 (3)0.099 (3)0.047 (2)0.0349 (18) -0.0025 (14)0.121 (4)0.025 (15) -0.036 (2) -0.0140 (15)0.019 (3)0.027 (3) 0.0207 (17) -0.0025 (19)0.0330 (16)0.045 (2) 0.037 (3) -0.0140 (15)0.019 (3)0.027 (18) 0.037 (3) -0.012 (3)0.025 (13)0.029 (3) 0.040 (3) -0.0141 (1	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

C3	0.017 (3)	0.0249 (18)	0.049 (4)	-0.006 (2)	-0.008 (3)	-0.004 (3)
C4	0.0279 (18)	0.0281 (19)	0.042 (5)	-0.0003 (16)	0.001 (3)	0.008 (4)
C12	0.014 (2)	0.0207 (19)	0.036 (3)	0.0019 (16)	0.0043 (15)	0.0121 (18)
C13	0.0324 (18)	0.028 (2)	0.0122 (16)	-0.0036 (16)	-0.0053 (15)	-0.0027 (15)
C14	0.029 (3)	0.0229 (19)	0.0102 (16)	-0.012 (3)	-0.002 (3)	0.0026 (14)
O15′	0.019 (3)	0.027 (3)	0.0207 (17)	-0.0050 (19)	-0.0049 (17)	0.0026 (15)
O18′	0.0330 (17)	0.0225 (15)	0.036 (2)	-0.0023 (13)	0.0025 (16)	-0.0022 (16)
O20′	0.025 (2)	0.063 (2)	0.039 (2)	-0.010 (3)	-0.0039 (18)	0.009 (2)
O32′	0.0285 (13)	0.029 (3)	0.040 (3)	-0.0141 (19)	-0.0021 (17)	0.0005 (19)
C5′	0.013 (3)	0.0270 (18)	0.037 (3)	-0.012 (3)	0.001 (2)	0.011 (3)
C6′	0.033 (3)	0.0180 (15)	0.0315 (16)	-0.002 (2)	-0.0128 (19)	0.0007 (12)
C1′	0.0289 (15)	0.0196 (16)	0.0222 (19)	-0.0039 (13)	0.0000 (14)	0.0016 (17)
C2′	0.008 (5)	0.0230 (19)	0.0321 (16)	-0.011 (4)	0.0036 (16)	-0.0013 (12)
C3′	0.017 (3)	0.0249 (18)	0.049 (4)	-0.006 (2)	-0.008 (3)	-0.004 (3)
C4′	0.0279 (18)	0.0281 (19)	0.042 (5)	-0.0003 (16)	0.001 (3)	0.008 (4)
C12′	0.014 (2)	0.0207 (19)	0.036 (3)	0.0019 (16)	0.0043 (15)	0.0121 (18)
C13′	0.0324 (18)	0.028 (2)	0.0122 (16)	-0.0036 (16)	-0.0053 (15)	-0.0027 (15)
C14′	0.029 (3)	0.0229 (19)	0.0102 (16)	-0.012 (3)	-0.002 (3)	0.0026 (14)

Geometric parameters (Å, °)

O7—C1	1.361 (5)	C31—H31A	0.9800
O7—C1′	1.381 (6)	C31—H31B	0.9800
O7—C8	1.434 (4)	C31—H31C	0.9800
O9—C2′	1.318 (6)	С33—Н33А	0.9800
O9—C10	1.357 (4)	С33—Н33В	0.9800
O9—C2	1.468 (5)	С33—Н33С	0.9800
O11—C10	1.191 (4)	C34—H34A	0.9800
O22—C21	1.333 (3)	C34—H34B	0.9800
O22—C23	1.485 (4)	C34—H34C	0.9800
O26—C25	1.316 (5)	C25—O32′	1.247 (6)
O26—C27	1.489 (4)	C25—O32	1.258 (6)
O29—C21	1.202 (4)	O15—C14	1.494 (8)
C8—H8A	0.9800	O18—H18	0.8400
C8—H8B	0.9800	O20—C14	1.146 (9)
C8—H8C	0.9800	C5—C6	1.3900
C10—C19	1.495 (4)	C5—C4	1.3900
С19—Н19А	0.9800	C5—C12	1.608 (7)
C19—H19B	0.9800	C6—C1	1.3900
С19—Н19С	0.9800	С6—Н6	0.9500
C16—O15′	1.441 (5)	C1—C2	1.3900
C16—O15	1.457 (5)	C2—C3	1.3900
C16—C21	1.519 (4)	C3—C4	1.3900
C16—C17	1.525 (4)	С3—Н3	0.9500
C16—H16	1.0000	C4—H4	0.9500
C16—H16′	1.0000	C12—C13	1.313 (7)
C17—O18′	1.450 (5)	C12—H12	0.9500
C17—O18	1.460 (5)	C13—C14	1.495 (7)
C17—C25	1.530 (6)	С13—Н13	0.9500
C17—H17	1.0000	O15′—C14′	1.447 (7)

C17—H17′	1.0000	O18'—H18'	0.8400
C23—C31	1.517 (5)	O20′—C14′	1.203 (9)
C23—C24	1.523 (4)	C5'—C6'	1.3900
C23—C30	1.526 (4)	C5'—C4'	1.3900
C24—H24A	0.9800	C5'—C12'	1.497 (6)
C24—H24B	0.9800	C6'—C1'	1.3900
C24—H24C	0.9800	С6'—Н6'	0.9500
C27—C28	1.508 (8)	C1′—C2′	1.3900
C27—C34	1.517 (5)	C2′—C3′	1.3900
C27—C33	1.524 (6)	C3'—C4'	1.3900
C28—H28A	0.9800	С3'—Н3'	0.9500
C28—H28B	0.9800	C4'—H4'	0.9500
C28—H28C	0.9800	C12′—C13′	1.333 (7)
C30—H30A	0.9800	С12'—Н12'	0.9500
С30—Н30В	0.9800	C13'—C14'	1.468 (7)
C30—H30C	0.9800	С13'—Н13'	0.9500
C1—O7—C8	119.0 (6)	С23—С31—Н31В	109.5
C1′—O7—C8	116.3 (5)	H31A—C31—H31B	109.5
C2′—O9—C10	110.8 (9)	С23—С31—Н31С	109.5
С10—О9—С2	119.4 (8)	H31A—C31—H31C	109.5
C21—O22—C23	121.9 (2)	H31B—C31—H31C	109.5
C25—O26—C27	122.2 (3)	С27—С33—Н33А	109.5
O7—C8—H8A	109.5	С27—С33—Н33В	109.5
O7—C8—H8B	109.5	H33A—C33—H33B	109.5
H8A—C8—H8B	109.5	С27—С33—Н33С	109.5
O7—C8—H8C	109.5	Н33А—С33—Н33С	109.5
H8A—C8—H8C	109.5	H33B—C33—H33C	109.5
H8B—C8—H8C	109.5	С27—С34—Н34А	109.5
O11—C10—O9	122.8 (3)	C27—C34—H34B	109.5
O11—C10—C19	125.6 (3)	H34A—C34—H34B	109.5
O9—C10—C19	111.6 (3)	С27—С34—Н34С	109.5
C10—C19—H19A	109.5	H34A—C34—H34C	109.5
C10—C19—H19B	109.5	H34B—C34—H34C	109.5
H19A—C19—H19B	109.5	O32'—C25—O26	114.1 (4)
C10—C19—H19C	109.5	O32—C25—O26	141.5 (4)
H19A—C19—H19C	109.5	O32′—C25—C17	135.1 (5)
H19B—C19—H19C	109.5	O32—C25—C17	107.3 (4)
O15′—C16—C21	105.1 (3)	O26—C25—C17	110.7 (3)
O15—C16—C21	113.7 (4)	C16—O15—C14	112.4 (4)
O15′—C16—C17	100.0 (3)	C17—O18—H18	109.5
O15—C16—C17	113.8 (3)	C6—C5—C4	120.0
C21—C16—C17	109.6 (3)	C6—C5—C12	116.8 (6)
O15'—C16—H16	128.5	C4—C5—C12	123.2 (6)
O15—C16—H16	106.4	C5—C6—C1	120.0
C21—C16—H16	106.4	С5—С6—Н6	120.0
C17—C16—H16	106.4	C1—C6—H6	120.0
O15'—C16—H16'	113.8	O7—C1—C2	121.8 (8)
O15—C16—H16′	91.7	O7—C1—C6	117.9 (7)

C21—C16—H16′	113.5	C2—C1—C6	120.0
C17—C16—H16′	113.7	C1—C2—C3	120.0
O18′—C17—C16	106.2 (3)	C1—C2—O9	111.4 (7)
O18—C17—C16	112.6 (3)	C3—C2—O9	127.9 (8)
O18′—C17—C25	96.5 (3)	C4—C3—C2	120.0
O18—C17—C25	119.7 (3)	С4—С3—Н3	120.0
C16—C17—C25	110.3 (3)	С2—С3—Н3	120.0
O18′—C17—H17	134.3	C3—C4—C5	120.0
O18—C17—H17	104.2	C3—C4—H4	120.0
C16—C17—H17	104.2	C5—C4—H4	120.0
C25—C17—H17	104.2	C13—C12—C5	122.9 (6)
O18′—C17—H17′	113.6	C13—C12—H12	118.6
O18—C17—H17′	83.4	C5—C12—H12	118.6
C16—C17—H17′	114.5	C12—C13—C14	127.0 (6)
C25—C17—H17′	114.2	C12—C13—H13	116.5
O29—C21—O22	126.6 (3)	C14—C13—H13	116.5
O29—C21—C16	125.7 (3)	O20—C14—O15	124.5 (6)
O22—C21—C16	107.7 (2)	O20—C14—C13	127.8 (6)
O22—C23—C31	108.8 (3)	O15—C14—C13	107.5 (6)
O22—C23—C24	110.6 (2)	C16—O15′—C14′	107.0 (4)
C31—C23—C24	112.7 (3)	C17—O18′—H18′	109.5
O22—C23—C30	102.5 (2)	C6'—C5'—C4'	120.0
C31—C23—C30	111.0 (3)	C6'—C5'—C12'	117.2 (5)
C24—C23—C30	110.7 (3)	C4′—C5′—C12′	122.2 (6)
C23—C24—H24A	109.5	C1'—C6'—C5'	120.0
C23—C24—H24B	109.5	С1'—С6'—Н6'	120.0
H24A—C24—H24B	109.5	С5'—С6'—Н6'	120.0
C23—C24—H24C	109.5	O7—C1′—C6′	131.5 (8)
H24A—C24—H24C	109.5	O7—C1′—C2′	107.8 (8)
H24B—C24—H24C	109.5	C6'—C1'—C2'	120.0
O26—C27—C28	102.7 (3)	O9—C2′—C3′	110.2 (8)
O26—C27—C34	108.9 (3)	O9—C2′—C1′	128.8 (8)
C28—C27—C34	111.5 (4)	C3'—C2'—C1'	120.0
O26—C27—C33	108.3 (4)	C2'—C3'—C4'	120.0
C28—C27—C33	111.8 (4)	С2'—С3'—Н3'	120.0
C34—C27—C33	113.0 (4)	C4'—C3'—H3'	120.0
C27—C28—H28A	109.5	C3'—C4'—C5'	120.0
C27—C28—H28B	109.5	C3'—C4'—H4'	120.0
H28A—C28—H28B	109.5	C5'—C4'—H4'	120.0
C27—C28—H28C	109.5	C13'—C12'—C5'	128.8 (5)
H28A—C28—H28C	109.5	C13'—C12'—H12'	115.6
H28B—C28—H28C	109.5	C5'—C12'—H12'	115.6
С23—С30—Н30А	109.5	C12'—C13'—C14'	117.6 (6)
С23—С30—Н30В	109.5	C12'—C13'—H13'	121.2
H30A—C30—H30B	109.5	C14'—C13'—H13'	121.2
С23—С30—Н30С	109.5	O20'—C14'—O15'	125.5 (6)
H30A—C30—H30C	109.5	O20'—C14'—C13'	128.0 (6)
H30B—C30—H30C	109.5	O15'—C14'—C13'	106.4 (5)
С23—С31—Н31А	109.5		

C2′—O9—C10—O11	-9.0 (7)	C6—C1—C2—C3	0.0
C2-09-C10-O11	-2.9 (7)	O7—C1—C2—O9	-3.1 (9)
C2′—O9—C10—C19	170.5 (6)	C6-C1-C2-O9	171.6 (14)
C2-09-C10-C19	176.6 (6)	C2′—O9—C2—C1	-46 (8)
O15'—C16—C17—O18'	-43.9 (4)	C10-09-C2-C1	-80.4 (7)
O15—C16—C17—O18′	-62.3 (5)	C2′—O9—C2—C3	124 (9)
C21—C16—C17—O18′	66.2 (4)	C10-09-C2-C3	90.4 (12)
O15′—C16—C17—O18	-77.0 (4)	C1—C2—C3—C4	0.0
O15—C16—C17—O18	-95.5 (5)	O9—C2—C3—C4	-170.1 (16)
C21—C16—C17—O18	33.1 (4)	C2—C3—C4—C5	0.0
015′—C16—C17—C25	59.5 (4)	C6-C5-C4-C3	0.0
015 - C16 - C17 - C25	41.1 (4)	C12-C5-C4-C3	179.9 (8)
C_{21} C_{16} C_{17} C_{25}	169 6 (2)	C6-C5-C12-C13	-1511(8)
$C_{23} = 0.22 = C_{21} = 0.29$	62(5)	C4-C5-C12-C13	29 1 (9)
$C_{23} = 0_{22} = 0_{21} = 0_{23}$	-1732(3)	$C_{2} = C_{12} = C_{13} = C_{14}$	-1765(7)
015' - C16 - C21 - 029	-62(5)	$C_{16} - 0_{15} - C_{14} - 0_{20}$	-11.7(10)
015 - C16 - C21 - 029	15.7(5)	$C_{16} - O_{15} - C_{14} - C_{13}$	172 4 (5)
C_{17} C_{16} C_{21} C_{29}	-1129(4)	C_{12} C_{13} C_{14} C_{13} C_{14} C_{10}	-169.6(8)
015' $C16$ $C21$ 022	173 3 (3)	$C_{12} = C_{13} = C_{14} = 0.20$	60(0)
015 - 016 - 021 - 022	-164.8(3)	015 015 $015'$ $015'$	-14.2(10)
$C_{13} = C_{10} = C_{21} = C_{22}$	104.8 (J) 66 6 (3)	$C_{13} = C_{16} = C_{13} = C_{14}$	14.2(10)
$C_{11} = C_{10} = C_{21} = C_{22}$	64.2(3)	$C_{21} = C_{10} = 0_{13} = C_{14}$	-1445(5)
$C_{21} = 0_{22} = C_{23} = C_{31}$	-60.1(4)	$C_{1}^{\prime} = C_{10}^{\prime} = C_{13}^{\prime} = C_{14}^{\prime}$	-144.3(3)
$C_{21} = 0_{22} = C_{23} = C_{24}$	-00.1(4)	C4 - C3 - C0 - C1	171.2(8)
$C_{21} = 0_{22} = C_{23} = C_{30}$	-1/8.2(3)	C12 - C3 - C0 - C1	-1/1.2(8)
$C_{25} = 026 = C_{27} = C_{28}$	1/9.7(3)	$C_1 = 0^{-1} = 0^{-1} = 0^{-1}$	114 (16)
$C_{25} = O_{26} = C_{27} = C_{34}$	-62.0(5)	$C_{8} = 0^{7} = C_{1}^{7} = C_{6}^{7}$	-5.3 (18)
$C_{25} = O_{26} = C_{27} = C_{33}$	61.3 (5)	C1 = 07 = C17 = C27	-56 (14)
$C_2/=0.026=C_2S=0.032^{\circ}$	-3.6(5)	$C_{8}=0/=C_{1}^{2}=C_{2}^{2}$	-1/5.5(4)
$C_{27} = 0.026 = C_{25} = 0.032$	8.4 (8)	C5'-C6'-C1'-0/	-169.2 (19)
C27—O26—C25—C17	179.3 (3)	C5'—C6'—C1'—C2'	0.0
018'-C17-C25-O32'	-18.1 (7)	C10-09-C2'-C3'	105.5 (8)
O18—C17—C25—O32'	5.0 (7)	C2—O9—C2′—C3′	-43 (8)
C16—C17—C25—O32'	-128.0 (6)	C10—O9—C2'—C1'	-86.2 (10)
O18′—C17—C25—O32	-27.7 (5)	C2—O9—C2′—C1′	125 (9)
O18—C17—C25—O32	-4.6 (6)	O7—C1′—C2′—O9	4.3 (9)
C16—C17—C25—O32	-137.6 (4)	C6'—C1'—C2'—O9	-167.3 (17)
O18′—C17—C25—O26	158.2 (3)	O7—C1′—C2′—C3′	171.5 (16)
O18—C17—C25—O26	-178.7 (3)	C6'—C1'—C2'—C3'	0.0
C16—C17—C25—O26	48.3 (4)	O9—C2′—C3′—C4′	169.5 (14)
O15'—C16—O15—C14	155.9 (17)	C1'—C2'—C3'—C4'	0.0
C21—C16—O15—C14	84.7 (6)	C2'—C3'—C4'—C5'	0.0
C17—C16—O15—C14	-148.9 (5)	C6'—C5'—C4'—C3'	0.0
C4—C5—C6—C1	0.0	C12'—C5'—C4'—C3'	170.8 (8)
C12—C5—C6—C1	-179.9 (7)	C6'—C5'—C12'—C13'	12.2 (11)
C1′—O7—C1—C2	125 (15)	C4'—C5'—C12'—C13'	-158.8 (7)
C8—O7—C1—C2	-171.5 (5)	C5'—C12'—C13'—C14'	179.1 (6)
C1′—O7—C1—C6	-49 (14)	C16—O15'—C14'—O20'	-13.8 (10)
C8—O7—C1—C6	13.7 (15)	C16—O15'—C14'—C13'	168.8 (5)

supplementary materials

C5—C6—C1—O7	174.9 (17)	C12'—C13'—C14'—O20'	16.2 (11)
C5—C6—C1—C2	0.0	C12'—C13'—C14'—O15'	-166.5 (6)
O7—C1—C2—C3	-174.7 (18)		

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	H···A	$D \cdots A$	D—H···A
018—H18…O32	0.84	2.21	2.631 (8)	111
O18—H18…O22 ⁱ	0.84	2.57	3.185 (5)	131

Symmetry code: (i) x-1, y, z.